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STATISTICAL DISTRIBUTION OF THE BREAKING STRENGTH OF A
BUNDLE OF CLASSICAL FIBERS

by Burt M. Rosenbaum
Lewis Research Center

SUMMARY

/ip is shown that, for ideal bundles having a given number of fibers that
will break under a load per fiber 17 and a given number of fibers that will
not break under a load 1Is (>Zl), the average number of unbroken fibers in the
bundle at loads between 17 and 1o depends linearly on the probability that
an individual fiber picked at random will support a load 1. Bundles are
grouped according to the number of fibers in the bundle that can support that
load per fiber at which the average total load supported by the bundle is a
maximum. An approximation to the maximum of the average load supported by the
bundle is arrived at for each group, and this maximum averaged over the groups
constitutes a lower bound for the average breaking strength of the bundle. The
results agree with those of Pierce and Daniels./

INTRODUCTION

A classical fiber is one that will support a load less than its breaking
strength indefinitely without stretching or breaking but will break immediately
under any load equal to or in excess of its breaking strength. The fundamental
papers dealing with the breaking strengths of an ideal bundle (no friction or
twist) of equal-length classical fibers are those by Pierce (ref. 1) and Daniels
(ref. 2). Pierce was the first to obtain an approximation to the average break-
ing strength of a bundle of N such fibers. Daniels rigorously showed by
sophisticated mathematical methods that the expression of Pierce is the correct
asymptotic limit of the breaking strength as N gets large. He also found the
asymptotic limit of the variance of the breaking strength for large N. In
this report, the method of reasoning employed leads to the establishment of the
aforementioned results from a viewpoint that is based on physical rather than
mathematical insight.

SYMBOLS

B(1) probability that randomly selected fiber will break at load less than 1

b(1) frequency function for breaking strength of individual fibers randomly
selected

E expectation value




¢(1)  IR(2)

nth  derivative of G(1) with respect to 1 evaluated at 7
Hy(y) nth  Hermite polynomial of ¥

k dummy index

L total load on bundle of fibers

E(Z) total load at 1 averaged over population of bundles

1 load per fiber

i load per fiber at which average total load I is maximum
N number of fibers in bundle

n number of unbroken fibers in bundle

n : number of unbroken fibers in bundle at load i

0 order

P probability

R(1) probability that randomly selected fiber will support load up to 1

s average breaking strength of bundle

y variable (MR(1) - ﬁ)/‘/NR(i)B(i)

8y (WR(1) - n)/(N - n)

o variable of integration

M value of 1 that maximizes average load supported by bundles having n

unbroken fibers at load 1
third moment about origin for variable vy

(o} standard deviation

CONCEPT OF PATH

Let the distribution of breaking loads of a classical fiber be given by
the frequency function b(1), where b(1)dl is the probability that a randomly
selected individual fiber will have a breaking strength lying in 4l at 1.




The cumulative distribution function

1
B(1) = “/” b(6)as

0

is the probability that a randomly selected fiber will break at some load less
than 1. Let R(1) = 1 - B(1) denote the probability that a fiber will remain
unbroken up to load 1.

When a load L is hung on an ideal bundle of N classical fibers, the
load distributes itself evenly over the unbroken fibers so that each of the n
unbroken fibers supports a load 1 = L/n. The breaking strength of a given
fiber of the bundle does not depend on the action of the other fibers of the
bundle and, hence, the breaking strength of the bundle may be determined from
the strengths of the individual fibers. In particular, suppose one considers
the bundle as separated into its independent individual fibers with separate
loads 1 of equal magnitude on each fiber. Let this load 1 be allowed to
increase monotonically from zero to the breaking strength of the strongest
fiber. Then, at any point in the process where the individual fibers support a
load 1, the total load L(1) supported by the bundle is the product of the
number of unbroken fibers n(l) and the load 1 acting on each unbroken fiber.
Thus, the breaking strength of the bundle is the maximum of the total load L.
After this maximum L has been reached, further increases in 1 cause a reduc-
tion in the total load L(1) = tn(?). (If the fibers were not separated in this
manner, and if breaking strength were determined by increasing L until break-
age occurred, no decreases in total load L would appear, and the bundle would
immediately break after the breaking strength of the bundle had been reached.)

The situation may be depicted by means of figure 1 (p. 4). In fig-
ure 1(a), a typical plot of 1 against R(1) is given. (Note that in the fig-
ures, R(1) decreases from unity to zero as one proceeds from left to right along

the horizontal axis.) It can be seen that as 1 increases from zero to high
values, R(1) decreases from unity to zero or, if R(1) is to be considered the

independent variable, 1 increases from zero to high values as R(1) decreases
from unity to zero. The path followed by a bundle of N fibers averaged over
the population of bundles is shown as the straight line in figure 1(b), where
the expected number of surviving fibers is given by E(n) = NR(1). The path
taken by a typical bundle is shown in figure 1(c), where n for that bundle
is plotted against R(1). TFor large N at least, the actual path followed by
a particular bundle would be expected to lie fairly close to the average path
as given by the E(n) line.

RESULTS OF PIERCE AND DANIELS
The average load supported by the bundle as a function of 1 1is
(1) = 1E(n) = NIR(1) (1)

The maximum average load supported by the bundle is

Tyex = D(1) = NIR(D) (2)
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Figure 1. - Plots with R(l) as independent variable.
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where i satisfies the equation
aL,(1) -0
al ~
R(2) = 1b(1)

Equations (2) and (3) represent the
approximation to the breaking strength
of the bundle as given by Pierce.
Daniels showed that this result is the
correct asymptotic limit for the ex-
pectation value of the breaking
strength for large N. He also found
that the asymptotic limit for the
standard deviation of the strength for
large N dis given by

o =1 ¢NR(1)B(T) (4)
Daniels makes the pertinent remark that
equation (4) would follow if one could
assume that the breaking strength is
only dependent on the number n = n(7)
of fibers surviving at a load 1 where
i is, of course, distributed according
to the simple binomial law. He adds,
however, that there appears to be no
"a priori justification" for this
assumption.

The average breaking strength s
of a bundle of N fibers is the maxi-
mum load that the bundle supports
averaged over the population of bundles.
For a particular bundle, this maximum
load will not, in general, occur at
1 = 1, and hence, it will be larger
than L(1), the value of L at 1. On
the other hand Iy,yx 1s L(1l) averaged
over the population of bundles, and
therefore, Lp.. constitutes a lower

If the maximum load for every_possible path (in the sense of
1 =1, then Ipax = L(1) would indeed be S

exactly.

It can be said that the approximation to S as given by equation (2) treats

every path as though its maximum load occurred at

1 =17,

AVERAGE PATH BETWEEN TWO DESIGNATED POINTS

It shall first be shown that, for values of 1 lying between 17 and 1o,




the average path taken by bundles which are constrained to go through the
points R(171), ny and R(l1z),ns (i.e., bundles which have nj unbroken
fibers at a load 131 and n2 unbroken fibers at a load 12) is merely the
straight line connecting these two points on a plot of n against R(1). The
proof i1s straightforward and goess as follows.

The probability that a bundle originally consisting of N fibers takes
a path such that it has nj survivors at 111 and nz survivors at 12
where N > np >n, >0 and 0< 17 <1ls is

Ni

P(ny at 17, np at 13) = T E CTREy I

()] 1R(1y) - BGR) M2 [ROL) 2 (8)

The probability that a bundle originally consisting of N fibers takes a path
that passes through the three points n3; at 13, n at 1, and np at Ilp,
where N>n; >n>n, >0 and 0< 17 <1< 1p, s

) N
TN - )i (np - n)i(n - ng)ing!

(2] R(2y) - 2P [R(D) - BOL)PERGH]E (6)

P(ny at 13, nat 1, np at 12)

The conditional probability that a bundle which passes through nj; at 1 and
n, at lo has n unbroken fibers at 1 1s given by dividing equation %6)
by equation (5)

B (l’ll - nz)!
" (np - n)i(n - np)!

1) - 2" [R(1) - RGR)]TE -

[R(11) - R(15)]"1772

The expectation value of n at 1 for a bundle passing through n3 at 13
and ng at 1l is

P(n at 1/ny at 11, np at 1p)

n
1
E(n at 1/ny at 17, np at 13) = E \nP(n at 1/ny at 17, np at 1p)

R(1) - R(1)
R(17) - R(1p)

=n, + (n; - ny) (8)

where N>ny >n>np >0 and 0< 1y <1< 1y. Equation (8) shows that the
average number of fibers surviving in a bundle passing through n; at 177 and




no, at 1ls is linear in R(1). Therefore, the
Path average path appears as a straight line connecting
1 the points n3; at 17 and np at 1o on a
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0 R number of fibers surviving at 1, and the average
1 0 loads for each class of paths shall be found as a
PmMMMﬁm?;m%gHHuwwt function of 1 or R(1). It shall be shown that
oad the average load for Qaths 1 (rig. 2) having more

Figure 2. - Average paths of bundles. fibers surviving at 1 _ than expected reaches a

maximum value at 1 = 1, whereag the average load
for paths 2 having fewer fibers surviving than expected at 1 reaches a maxi-
mum value at 1 < l. This subdivision of paths in accordance with _the value of
N carries through at all values of 1 so that the average load L at any 1
for bundles having a given n may be determined. The subdivision can also be
regarded as a first, although primitive, step in the approach to the ideal
wherein the probability and maximum supported load are determined for each
possible path, so that an averaging of the maximum loads over the infinite pop-
ulation of paths yields 8, the average breaking strength of the bundle.

In accordance with equation LB), the expectation value of n at 1 for
a bundle passing through 7 at 7 is

N—(N—ﬁ)g—g’% n>f,1<1 (9a)
E(nat /nat 1) =
ﬁig%; n<f, 1>1 (9b)

Figure 2 represents the situation that prevails. Every path must go through

the initial point n =N, R(1) = 1 and the terminal point n = 0, R(1) = O.

If no other point along the path is specified, the path averaged over the

bundles is given by curve O of figure 2, that is, by the straight line connecting
the initial and terminal points. If a point is specified along the path between
the initial and terminal points, two-segmented lines result that represent the
average paths of bundles going through the additional point specifjied (curyes 1
and 2 of fig. 2). The additional point specified for curve 1 is n3 at 1,
whereas the additional point for curve 2 is no at 1.

When the load per fiber is ZA the average total load supported by a
bundle which goes through 7 at 1 is

T(1/a at 1) = 1E(n at /5 at 1) (10)




MAXTIMUM LOADS ON PATHS

The maximum load that occurs on an average path when a particular a
at 1 dis specified can be determined as follows. Let G(1) = IR(1); then
equations (1) and (3) can be written

L(1) = NG(12) (12)
G (1) =0 (3a)
The assumption is also made that the form of R(1) is such that T(1) exhibits

one and only one peak, that peak occurring at 7. Mathematically this is
equivalent to requiring that

G'(1) >0 1<1 (11a)
¢ (1) <0 1>1 (11b)
From equations (9) and (10),
- NR(2) + (N - 8)ar (1) 1<1 (12a)
aL(1/n at 1) _ B(1)
+ g%; G'(2) 1>1 (12p)

Equation (12a) shows that, for values of 1 > NR(Z T(1/4 at 1) is
always increaging up to 1 = 7. At 1 =1, the slope changes sign (eq. (12b))
and L(1/f at 1) decreases as 1 increases when 1 >1. Hence, when
n> NR(Z) the maximum value of I;Z/n at Z) occurs at 1 = 1 or

T(1/4 at 1)py = AL NR(1) < fi < W (13)

Again, by equations (12), for values of 1 < NR(Z L(Z/n at 1) reaches
a maximum when 1 = Ay < 1, where A, satisfies “the equatlon

)

G (%) = _T(w—__ (14)

[}

With &3 denoting the right side of equation (14), the following guantities
can be expanded in powers of ©fp, where the coeffilclents of the powers of oj
are functions of the derlvatlves of (1) evaluated at 17:

(15)




To/A e ) s . N 2 N(%  1\3
L(%ﬁ/n at 1) =0l - s 83 + —-<ga§ G;>6n + O(Sn) (17)

In equations (15) to (17) the symbol Gp represents the n®® derivative of
G(1) with respect to 1 evaluated at 1 = 7. Note that Go < O.

Equations (13) and (17) show that to first order in ®g, when the paths
are classified in accordance with 7 at Z, Deniels' result holds, that is,
the breaking strength of the bundle is only dependent on the number of survivors
at 1.

Equation (17) may be employed to find a larger lower bound for S, the
average breaking strength, than that given by equation (2):

N
§>Z P(R at i)L(?xﬁ/ﬁ at 7) > NIR(Z)
n=0 .
(NR(2)]
N G
+12l E P(Q at 1) [--(-%2- 85 + <% Gg Gg)zs;? .. ] (18)
n=0

If the variable is changed from 7 to ¥, where y 1is of standard measure
and is defined by

NR(L) -
Vim(1)8(7)

the frequency function f(y) can be expanded in terms of Hermite polynomials
Hn(y) by the method of Kendall and Stuart (ref. 3):

vy = (19)

B

n

f(y) ‘/lg /2 [1 +%u5':yl%(y) + .. ]

-

n

1 e'y2/2[1+%'- ZR(1) -

Ven (1)B(2)

Also 8, can be written as a series in powers of 7y:

n
RO R |2
5 —\/m(i) yZ< 1) [mm] v (21)
k=0

(y3 - 3y) + .. ] (20)

g’




Substituting in equation (18) yields

5§ > niR(%) l/ -Y2/2[1+l 2R(1) - 1 (y5-5y)+...]
2 Ve ® VR(T)B(T)

>Na35>-zg};£§_g%[l+a_&____>_-_i_)_+...]

Cs_ _l_> L [R(i)]3/2 N
+<3G§+G2 V‘a_“ﬁ 0 [L+.. ]+ o) (22)

The variance of the breasking load based on the previous approximations is given
as
S R(DB(I(D)2 + fE L o B Ry 14 L T BA=L ] o)
2 ¥B(1) VIR(7)B(2)

(23)
CONCLUDING REMARKS

A method of determining a lower bound for the average breaking strength of
a bundle of classical fibers has been presented which involves the subdivision
of the bundles in accordance with the number of unbroken fibers at a given
value of load per fiber. The method also yields the approximate statistical
distribution of the breaking strengths so that the variance of strengths may be
calculated. The result agrees with the literature.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 13, 1965.
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